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ABSTRACT—The influence of a vortex on a gaseous diffusion reaction is examined. The vortex is taken to be
two dimensional, and the species are initially assumed to occupy adjacent half spaces. In the flame-sheet limit,
thermal expansion and the effects of variable diffusion are taken into account. A global similarity solution
exists for this problem, and a simple expression for the solution is determined in the asymptotic limit of
large Schmidt number. The problem is also analyzed for finite-rate chemistry, appropriate for an isothermal,
bimolecular reaction. The problem depends upon three parameters, Reynolds number, Schmidt number and

“the equivalence ratio, with the Damkohler number equal to the dimensionless time. The structure of the
reaction region normal to the flame front is examined as a function of time. The evolution of the reaction
to a state relation, dependent only upon the mixture-fraction variable, is demonstrated as the Damkohler
number becomes large.

1 INTRODUCTION

Investigation of turbulent combustion has become an area of greatly increased activity
over the past several years. This activity has occurred because both theoretical and
experimental progress has been made in understanding the governing processes and also
because of the great technological importance of turbulent combustion, see Williams
(1985a), Williams (1985b) and the references therein.

Experiments in shear layers, starting with Brown and Roshko (1974) and including
Mungal and Dimotakis (1984a), Hermanson et al. (1987) and Mungal and Frieler (1984b),
for example, have demonstrated that large-scale coherent structures determine the width
of the shear laver, but that intimate mixing of the different species and reaction takes
place at much smaller length scales. The model of Broadwell and Breidenthal (1982),
which relies upon results of many of these experiments and which has been used as the
basis for interpretation of these and subsequent experiments, is based upon the concept
that lateral growth of the shear layer is governed by fluid-dynamical entrainment. The
fluid from the two streams in the shear layer is mechanically mixed by the cascading
process often associated with turbulence to smaller and smaller length (and time) scales
until it finally reaches scales at which diffusion (mass, momentum or energy) become
important. Since these diffusion scales are very much smaller than the entrainment scales,
the entrainment. or mechanical mixing scales are governed by very different dynamical
processes than those governing the small scales at which diffusion (and in the reacting
case, the reaction) take place. Subsequent examination of shear layers has involved
extensive computations, see Rogallo and Moin (1984), Ghoniem et al. (1988) and Son
et al. (1991) and the references therein. These computations have also verified the basic
concept described above concerning the separation of scales, and have studied in detail
features of the shear layers including aspects of reaction in these layers.

Likewise, experiments in fire research, in which buoyant convection as opposed to forced
convection is essential, indicate that, when the Grashof number (which is proportional
to the Reynolds number squared) is large, the length and time scales associated with
turbulent combustion can also be separated and analyzed differently. At the largest length
scales, the geometry defines the flow field, which is essentially inviscid or nondissipative
away from boundaries. At smaller scales, where the combustion occurs, diffusion of
the fuel and oxidizer into each other and reaction takes place, with subsequent reactant
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consumption and heat releasc. Finally, at still smaller scales, the structure of the reaction
zone in individual flamelets is important and chemical species concentrations can be
determined. The essence of the model of fire-induced turbulent combustion outlined in
Baum et al. (1989) is to analyze each of these three scales and to couple them through
their dynamical interactions.

Marble (1985) proposed a two dimensional model problem of small-scale mixing
and reaction, which he and his colleagues studied extensively through analytical means
Karagozian and Marble (1986a), Karagozian (1982), Karagozian and Manda (1986b) and
Norton (1983). The model is important because it includes the two-dimensional effects
of flame stretching and convective enhancement of diffusion in a diffusion-controlled
reaction in a viscously spreading vortex. The analytical method utilized by Marble to
attack this problem is based on a technique developed earlier by Carrier, Fendell and
Marble (1975) in which the flame front is analyzed locally, assuming that the front is
sharp, and summing over this flame front to obtain global dependences of consumption
rates upon the governing parameters.

There are several limitations of the model and the analysis utilized by Marble and
coworkers, some apparent and others tacit. The original model proposed by Marble
(1985) is based on an isothermal or constant-density model for the reaction, a very
common, but limiting assumption for combustion. The analysis, while intuitive, clever
and correct under many conditions, does not provide the basis for determining the
limits of validity for the approximations obtained. This methodology was subsequently
applied by coworkers of Marble, Karagozian and Marble (1986a), Karagozian (1982),
Karagozian and Manda (1986b), Norton (1983) and by others, Cetegen and Sirignano
(1990), Cetegen and Bogue {1991), to both extend the model and to apply the model
to other questions of interest. In Marble (1985) and Karagozian and Marble (1986a)
for example, the constant-density approximation was relaxed to roughly determine the
effects of thermal expansion when the chemical reaction is mildly exothermic, and in
Norton (1983) and Cetegen and Bogue (1991), some effects of finite-rate chemistry were
examined. Since the mathematical limitations of these analyses are not clear, Rehm et
al (1989) examined this question in their analysis of the original Marble problem, noting
that this problem allows a global similaritv solution. '

In addition to the generalizations of the methodology used by Marble to solve this
problem and its extensions, other researchers have taken different tacks to obtaining
solutions. Laverdant and Candel, (1988a), Laverdant and Candel (1988b), and Laverdant
and Candel (1989), have used finite difference methods to examine the problem while
Meiburg (1990) has used Lagrangian, vortex tracking numerical methods to examine the
effects of thermal expansion and baroclinic vorticity generation on the vortex, diffusion-
flame interaction. Also, Macaraeg et al (1992) have used a combination of asymptotic and
numerical methods to examine the problem for finite-rate chemistry, concentrating on the
initiation of the reaction. In all cases, the interest in both analytical and computational
studies is to isolate particular physical effects and study these effects for the purpose of
understanding and possible control of the large scale structures in combustion.

In the present paper, the authors extend the analysis presented in Rehm et al. (1989)
to consider both the effects of thermal expansion on a flame-sheet analysis and the effects
of finite-rate chemistry on a non-premixed fiame, vortex interaction. We emphasize that,
although numerical evaluations are performed to obtain results, this study is an analytical
one based on the conservation equations; it is not based upon intuitive approximations,
but introduces approximations whose validity can be ascertained. The context of the
work is unwanted fires, the primary area of interest of the authors. In unwanted fires,
it is generally expected that fuel enters the gaseous state from either a solid or a liquid
phase through pyrolization or evaporation by heat transfer from existing flames; hence
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the ignition of the fire is assumed and only the enhancement of the ongoing combustion
rate by mixing is of concern. Therefore, in contrast to the analysis on fimite-rate eflects of
Macaraeg et al. (1992), we do not examine the initiation process, but rather the transition
of the finite-rate process over to the flame-sheet limit. Also, in contrast to the intuitive
nature of the analysis methods used in Norton (1983) and Cetegen and Sirignano (1990),
we utilize an analytical approach starting from the conservation equations, similar to our
earlier methods Rehm et al. (1989).

In Section 2 we formulate the problem allowing for heat release and thermal variation
of the transport properties. In Section 3 the case of infinite-rate chemistry is considered
including heat release and variable transport properties, and an asymptotic solution valid
for large Schmidt number is presented. This solution is new and quite simple. In Section
4 we analyze the problem when there is a time scale associated with the combustion
chemistry; for this analysis, we assume constant-temperature finite-rate chemistry. The
consequences of the analysis are compared with the infinite-rate case. In Section 5,
results are presented, and conclusions are given in Section 6.

2 FORMULATION OF THE PROBLEM

Consider the problem in which initially there is fuel in the left half-plane and oxidizer
in the right half-plane in arbitrary proportions specified by the initial equivalence ratio.
These half-spaces are brought into contact and simultaneously a line vortex with axis
at the origin is imposed (see Fig. 1). The vortex induces a convective mixing of the
interface between the two species, increasing the area of the separating surface in the
neighborhood of the origin and enhancing the diffusion of the species into each other.
For these conditions, the general equations are:

The species equations:

aY;
p(a—[+ﬁ'VY,'> =V-(pD,'VY,')+W,' (1)
The energy equation:
oC,T .
p< a‘t’ +ﬁ-VC,,T) =V -(pCpkVT)+4q Q@)
The continuity equation:
dp
- ~(p) =0 3
o+ V- (o) ©
The state equation:
p=pRT (4

In these equations, symbols have their usual meanings: Y; are the mass fractions of
i =1=f fuel, i =2 = o oxidizer and i = 3 = p product; p is density, & is the
velocity, D; are the diffusivities, W; are the reaction rates, T is temperature, C,, is the
constant-pressure specific heat, & is the thermal diffusivity, ¢ is the reaction heat release
rate, p is the pressure and R is the gas constant. These equations are supplemented by
the Navier-Stokes equations representing momentum conservation.

3 FLAME-SHEET PROBLEM

3.1 Pseudo-Mixture Fraction Variable

In this subsection, we consider a general formulation for the flame-sheet approximation
which allows the fluid to expand with the heat released by the reaction and also takes
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Fuel Oxidizer

Flame

FIGURE 1 Schematic diagram of vortex, flame-sheet interaction, showing fuel on the left, oxidizer on the
right and some of the independent variables used in the analysis.

account of variable transport properties. This analysis follows very closely that of Baum
etal. (1991) and is presented in abbreviated form for completeness; for more information
on the pseudo-mixture fraction formulation, see Baum et al. (1991). In this model, we
define a Shvab-Zeldovich or mixture-fraction variable

Yf/v/Mf - YO/VOMO + Yoo/VoMo

Z= 5
Y[o/l’[Mf+Yao/V0Mo ( )
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for which a linear combination of Egs. (1) yields, assuming all diffusion coefficients to
be equal, )

p(%f-ﬂz-v.i) =V -(pDVZ) (6)

Here, the v; are the stoichiometric coefficients, the M; are the molecular weights, and
the subscripts f,o represent fuel and oxidizer respectively. The initial and boundary
conditions for Z are Z =1 forx <0and Z =0forx > 0.

We now assume that (see Baum et al. (1991) for a more general discussion) all
thermodynamic and transport properties can be related uniquely to Z through a library
of state relationships, and split the velocity field into a solenoidal component and an
irrotational component, as follows:

i=v+Vo 0)

where V-V = 0 and V x ¥ = &. Then, the vector potential for the irrotational velocity
component satisfies the equation:
1 dp ~
Vip=———=V-(pDVZ 8
$=—7az (pDV Z) ®)
which is obtained by manipulating the continuity equation, Eq. (3) and the mixture-
fraction equation, Eq. (6).

Define 5
P2y = do POIDE) o
Jy P(z)D(z)dz
Then .
) 1d
Vi = —;d—% | p(z)D(z)dz V*F (10)

We assume that the state relationship can be reasonably approximated by Baum et al.
(1991): 'fi—’dizﬂ = % = constant. Then
V¢ = FK+V?F (11)

where the upper sign is for 0 < A < 2, and the lower sign is for Z, < Z < 1. Here,
the subscript s stands for the flame sheet. Define Z(Z) as follows:

Z =ax + by exp(FK+F [D;) (12)

where the upper sign is for 0 < F < F; and the lower sign is for F;, < F < 1. We
require that

Z(Fs+)=Z(Fs—)

oz dz
'87):«» = a)s—

and these requirements determine the constants a4 and b4 (see Baum et al. (1991)).

a, =b_(K_/K,)exp[F{(K, +K_)/D;]=b,
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a_=1-b_exp(K_/Dy)
b = [(exp(K-/D;s) — exp(K_F,/D;)
+(K_/K)exp[(K~ + K, )F;/D;][1 — exp(—K.Fs/Dy)]|™ (13)

Z is the pseudo-mixture-fraction and at large Reynolds numbers satisfies the constant-
property convection-diffusion equation often analyzed for the mixture-fraction variable.

%f— +d-VZ =D,VzZ (14)
Here, the initial conditions (I.C.) are Z = 1 forx < 0Oand Z = 0 forx > 0. D; is
the value of the diffusion coefficient at the flame sheet (at the flame temperature), see
Baum et al. (1991) for more discussion.

The pseudo-mixture-fraction variable allows us immediately to interpret all of the
analysis of the flame-sheet problem for the mixture-fraction variable in a fluid with
constant properties more generally in terms of a flame-sheet model which includes both
thermal expansion from reaction and transport properties depending upon temperature
and density. In particular, each contour for a constant value of the pseudo-mixture-
fraction Z represents a flame-sheet location for a specific value of the equivalence
ratio, and the transformations given by Egs. (9) and (12) determine how each flame
sheet is moved relative to the origin where the vortex is located by thermal effects. In
addition, the irrotational component of the velocity resulting from thermal expansion
and variable transport properties is determined from the vector potential given in Eq.
{8) once the mixture-fraction variable has been found, as it is approximately for large
Schmidt numbers in the following subsection.

3.2 Large-Schmidt Number Asymptoric Solution

In this section, we examine the Marble problem using the pseudo-mixture-fraction
formulation presented above and obtain a quite simple asymptotic solution valid for
large Schmidt numbers. This solution is new and simplifies considerably the solution of
the more general problem where one is interested in the effects of finite-rate chemistry.
At this point we specialize to the Marble problem, specifying the tangential velocity
vy imposed as
de r
vo(r,1) = r == = s—[1 - exp(~n)] (15)
where T is the circulation of the vortex, v is the kinematic viscosity and n = r?/4vt is
a similarity variable. This velocity field satsfies the Navier-Stokes equations, and is the
solenoidal portion of the velocity field utilized in the analysis above. The equation for
the pseudo-mixture-fraction variable is then
8Z vgdZ #Z 10Z  106°Z
—_—t = - ——t-F7—+—=5—=5)=0 16
50 "7 6 ’(ar- For Y riee (16)

The problem is made dimensionless using the kinetics time scale 79 = v, M, /I; Y0, the

length scale defined by this time and the diffusion coefficient | = /Dv, M, /I; Yoo

and the concentrations with respect to their initial values. Here, k is the value of the
kinetics rate coefficient at the flame temperature. With this scaling, the dimensionless
time becomes a Damkohler number. Three dimensionless parameters enter the problem,
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the equivalence ratio, a = Y,voM,/ Y,ovs My, the Schmidt number, S¢ = v/D, and
the Reynolds number, Re = I'/(4nv). First, the similarity variable becomes

n=r*/(4Sc,) (17)

while equation (15) becomes
ve(r,t) =rd0/dt = (2ReSc/r)[1 — exp(—n)] (18)
As in Rehm et al. (1989) we change to Lagrangian coordinates. Integrating the tangential

velocity gives the angle 6(r, 6o, t) at time ¢ for any fluid element initially located at r, 8.
A change of variables to the Lagrangian coordinates, r,, 8,, T,

r=unr
o =g, + el Ean) (19)
2 n
t=r

where E;(z) = floo t~J exp(—zt)dt, can then be made in all of the equations. For
the problem posed above for the mixture-fraction variable (which we call the Marble
problem), there are no length or time scales, and we find that Z is only a function of
the similarity variable n and the angle 6.

The use of Lagrangian coordinates eliminates the need to resolve small-scale internal
transition layers which arise when the Reynolds number is large. With this transformation
the problem reduces simply to a time-dependent diffusion problem. The equation for
the mixture fraction in Lagrangian variables becomes:

oz  [(&z Loz e 1-em 2+1 1 87
or 8r§  rodrg n ry 65

2Re 1—e™™\ 8Z Rel—-e~" $Z
— | — =n_ R —_——_— =0 20
( 2 (e - ) % T 7 aroaeo) 2

To
The solution depends only upon the similarity variable and angle.

In Rehm et al. (1989) the Marble problem was solved by Fourier analyzing the mixture
fraction variable in the Lagrangian angle 8y, solving the linear, two-point boundary value
problem by asymptotic and numerical methods, and Fourier synthesizing the complete
solution. The asymptotic analysis involved a large-Schmidt-number approximation. The
applicability of this approximation was tested against the direct numerical solution of
the equations, and the conclusion was that the large-Schmidt-number approximation has
wider applicability than one might initially expect. Recent experimental evidence of Dahm
and Buch (1989) comparing mixing in liquids and gases confirms the conclusion that a
large-Schmidt-number approximation, which is definitely valid in liquids, is qualitatively
(and approximately quantitatively) valid also in gases.

In this section a new, much simpler asymptotic solution is derived for the mixture
fraction when the Schmidt number is large. The asymptotic results compare well with
those obtained in Rehm et al. (1989) over ranges of interest. The method used to obtain
the mixture fraction is then utilized in the following section on the more general problem
with finite-rate kinetics. It is convenient to use the similarity variable, n = r¢/(4Sct),
and the Lagrangian coordinate normal to the interface between the fuel and the oxidizer,
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< = /Scycosby. The resulting equation for the mixture fraction is messy and is not
stated here, see Rehm et al. (1992). However, this equation simplifies considerably and
allows additional analysis when the Schmidt number is large. For large Schmidt numbers
and for n > 0, Eq. (20) becomes

2
0Z «¢9Z 1 1—e 2’z
—+-—+-|{|R +1]| — =0 21
Ton 2<+4[(e n ) }Bcz 1)
where Z - 1as¢— —ooand Z — 0 as ¢ — co.
We now make a final change in variables from ¢ to g
w=cf(n) (22)

where
1

VI+Re¥fi(n)
film) = [1/3 = 2E4(n) + Eo(2m)}/n’ (23)
Ej(x)= /lx 1 exp(—xt)dt
Function f1(n) was introduced in Rehm et al. (1989), where its properties were discussed.

With this new independent variable, and assuming that Z only depends on g, Eq. (21)
becomes

f(m=

8z &z
u—+ == =0 24
"o T (24)
and this equation has solution
Z(p) = (1/2)erfc(p) (25)

satisfying boundary conditions that Z — 1 as u'— —oco and Z — 0 as u — oo. This
corresponds to boundary conditions in Eq. (21) stated in terms of 5 and ¢. It should
be noted that the error function profile for Z, which also emerges in the approximate
analyses noted above, is here derived in terms of the asymptotically exact independent
variable. This is not the variable which emerges from more approximate analyses.

4 FINITE-RATE CHEMISTRY PROBLEM

For the problem of finite-rate combustion. we assume a single-step reaction
VilYrl 4 volYo] — vplY,]

and that the reaction rate does not depend upon temperature, i.e., that there has been
ignition and that the reaction is bimolecular. With these assumptions together with
the assumptions described above, the species equations are decoupled ‘also from the
continuity equation. For analysis of the effects of finite rate of reaction, we now abandon
the thermally expandable fluid with variable-property transport coefficients; the fluid has
constant density.

r 80 o " Trae

aY; LV aY; 8*Y; 19Y; 1 8*Y;
ot r 66

) =—kY;Y, (26)
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where ¢ = 1.2 and D are the species diffusion coefficients, assumed to be constant
and equal. The initial conditions are that Yy = Yye,Y, = 0 for /2 < 6 < 37/2 and
Yj = 0, Ya = Yo(l for —7(/2 < 6 S 1r/2.

Rather than solve directly Eqgs. (26), we introduce another dependent variable, in
addition to the mixture-fraction variable, the difference between one species concentra-
tion and the mixture-fraction variable. Using the mixture fraction variable Z, we can
eliminate the oxidizer concentration from the equations

Y, — Yf + Yoo _( on + Yoo )Z
voM,, Vfo V,,Mo V[Mf VoMo

Yo/Yoo =aW +1—=2Z @7

Then the equation for the Y has the same left side as before while the right side is
—kY(Ye/viMp)+ (Yoo /VoMe) — [(Yro/vyMs) 4+ (YoovsMs)]Z. We then change the
dependent variable from Y, to W.

W(ro.00,‘r) = Yf(ro,eo,T)/on - Z(T],go) (28)
The initial conditions are that W = 0 at t = 0, and the boundary conditions are that

W — 0 as r cos§ — xoc away from § = £m/2.
The equation for W becomes

OW  ve OW 32W+13W+162W 29)
8t r 08 arr " r or  r? 962
=~(W +Z)aW +1-Z)
where all variables are dimensionless.
4.1 Solution to Finite-Rate Problem
Changing variables from Eulerian to Lagrangian in Eq. (29) yields
ow azu’+1aw+ rel=e” 2+1 1 0*w
or dr;  ro Oro P ré 96}
[ (oY O 2R B 0
r02 n 96y ro n 3’0390

=—[W + Z)laW +1-Z]

with initial conditions that W = 0 at + = 0 and boundary conditions that W — 0 as
rgcos(6p) — oo for 6y away from +x/2.

Again we change to the the similarity variable, n = r2/(4Sc7), and the Lagrangian
coordinate normal to the interface between the fuel and the oxidizer, ¢ = /S cncos 6.
For large Schmidt number (to leading order in Sc¢), the equation for the dimensionless
species concentration becomes, for n > 0,

W oW W —e 1\?
2 —r)d———-i?————l-[(Rel ¢ )+1]32W 31

"or "on 28 4 " a¢?
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FIGURE 2 (a) Plot of the variable W at time ' = 152 for the parameters Re = 100,S¢ = 10 and
a =]. W is defined as the dimensionless difference between species 1 and the mixture-fraction variable

(see Eq.(28).

= —7(W + Z)(aW +1-Z)

where the boundary conditions are that W — 0 as ¢ — +o00.
With a change of variables to y,n' = /7 and 7 = ¢, Eq. (31) becomes

&
taaL:/ B %F(n'/t)(Zu%[Z + a:;') =—t[W+ZWllaW +1-Zw)]  (32)
where 2
F(n)= [(Rel-—e:l(——l)) +1J ) (33)

and where W — 0 as y — +o0.

We now discuss some of the properties of Eq. (32). Note again that the dimensionless
time is a Damkohler number (the ratio of a residence time for diffusion to the chemical
reaction time). First, away from the reaction zone (i.e., for 5’ and x not too small and
for ¢ not too large), the right side must be zero. Setting this term, the chemical reaction
term, to zero implies either that W + Z (u) or aW + 1 — Z () is zero. If the first term
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FIGURE 2 (b} Plot of the variable ¥ at time ' = 3103 for the parameters Re = 100,Sc = 10 and
a =1 W is defined as the dimensionless difference between species 1 and the mixture-fraction variable

(see Eq.(28).

is zero, both W and Z are zero, and therefore, we are in the region where there is all
fuel (and no reaction). Similarly, if the second term is zero, both W and 1 — Z are zero,
and we are in the region where there is all oxidizer (and no reaction). Also, for large 7’
or small 7, and any g, the equation reduces to that of the one-dimensional (1-D) version
the problem (the diffusion-reaction problem with no vortex field).

We have formulated this 1-D problem as two coupled equations, one for the mixture
fraction and the second for the dimensionless species concentration, and we have utilized
the fact that a similarity solution exists for the case of infinite-rate chemistry. When the
1-D problem is formulated in this fashion, Eq. (32) is obtained with F(p) = 1,p =¢ =
x[(2V/Sct) and x, ¢ the dimensionless distance and time, with Sc¢ = 1. The important
point to note is that the two-dimensional problem reduces to the one-dimensional case
when either the Reynolds number is zero or at large distances from the vortex center
where the imposed velocity vanishes, i.e., when the function F(n'/t) is approximately
unity. The 1-D equation is a good approximation to the full 2-D problem even for large
Re provided that the time is small and radius not too small.

This one-dimensional problem has been formulated earlier and solved by asymptotic
methods by Kapila (1983), who formulated the problem as two coupled equations for
the dimensionless species concentrations. He determined asymptotically the properties
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FIGURE3 (a) Plot of the mixture-fraction variable Z at time ¢’ = 152 for the parameters Re = 100, Sc = 10
and o = [.

of the problem both at early and late dimensionless times and determined the structure
of the flame sheet as time becomes large. All of these results apply directly to the 2-D
problem away from the imposed vortex where F (1) =~ 1. Each species is initially a
step function with all fuel to the left of the interface and all oxidizer to the right. At
early times, each diffuses according to the 1-D solution to the diffusion equation for an
initial step function, namely, according to the well-known complementary error function
solution. Later, there are outer regions where the fuel and oxidizer remain undisturbed
and the reaction is still zero, separated by the region where the fuel and the oxidizer
make the transition from their undisturbed values to zero. Imbedded in this transition
region is the flame structure, determined by a full transient reaction-diffusion balance
that can be cast as a problem reported earlier in the literature, Friedlander and Keller
(1963). It should be noted that the flame structure cannot be evaluated by analytical
means, but requires numerical evaluation. Therefore, we have chosen to determine the
solution to Eq. (32) directly by numerical methods, and these results are presented in
the last section.

For early times, however, Eqs. (32) and (33) simplify considerably allowing an
approximate solution in terms of special functions Rehm et al. (1992). At late times,
results can be related Rehm et al. (1992) to those obtained by Kapila. Also, the
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FIGURE3 (b) Plot of the mixture-fraction variable Z at time ¢’ = 3103 for the parameters Re = 100, S¢ = 10
and a = 1.

expressions derived above can be used to obtain expressions for the consumption rate,
which is proportional to time at early times and constant at late times Rehm et al. (1992).

5 RESULTS

We now show spatial and temporal results for Re = 100,S¢ = 10, and a = 1. In Fig.
2, two plots of contours of W are shown at dimensionless times ¢’ = 152 and 3103 as
computed from Eq. (32). The contours are generated in the 5 plane and plotted by
evaluating W on a 10 unit by 10 unit grid using NCAR graphics. The numbers on the
plots designate maximum contour levels; the specific values are not important. What
is important is the overall temporal and spatial behavior of the solution, which can be
ascertained from this figure and the following two. The deviation of the species from
that found using flame-sheet analysis, W, is found to change from its initial value, zero,
to its minimum value, -0.5, as a spiral that slowly winds up and expands out into the
plane, indicating how the structure of the combustion zone changes in physical space as
time progresses. It should be noted that in the core of the expanding spiral region, the
value of W becomes zero again because the reaction is complete. As noted in the last
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FIGURE 4 (a) Plot of the reaction rate at time ¢’ = I52 for the parameters Re = 100,5¢ = 10 and o = L.

section, for early times, there is only a reaction-diffusion balance; convection has not
had time to develop and to distort this balance. For the scale used here, this balance
is the appropriate one everywhere except near the origin. Therefore, even up to a few
units of time, W is essentially zero everywhere except along the vertical axis and within
about a unit of the origin, where only slight rotational distortion has begun to occur.

Contours of Z, the mixture-fraction variable, are shown in Figure 3 for the same
two times as in the preceding figure. These plots appear qualitatively similar to those
shown in Fig. 2. Again, the numbers on the plots, indicating the relative contour
levels, can be ignored. It should be noted, however, that each contour of constant
mixture fraction Z represents a flame sheet for a different value of the equivalence ratio
(a0 = YyovoM,/YooveMy). For unit stoichiometry the flame sheet remains along the
y-axis far from the origin; for other values of the equivalence ratio, the flame sheet
either follows a contour on the fuel-rich side (1/2 < Z < 1) or on the fuel-lean side
(0<Z L£1/2).

Plots of the reaction rate at these times are shown in Figure 4 and are also qualitatively
similar to those shown in Figs. 2 and 3. However, the reaction takes place in such a narrow
region, that most of the contours shown in Fig. 4 are zero, and the plotting package does
not perform very well in illustrating the behaviour of this quantity. (Obtaining clear and
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FIGURE 4 (b) Plot of the reaction rate at time t' = 3103 for the parameters Re = [00,S¢c = 10 and
a=1

meaningful plots of the solution has, in fact, been a significant task.) Again, numerical
values shown on the plots are not important. Since the reaction takes place in a very
narrow zone, the reaction-region structure is better exhibited, we believe, in Figures 5(a)
and (5b).

In Fig. 5, the reaction rate at several times is contrasted for (a) unit stoichiometry
(o = 1.0) versus (b) non-unit stoichiometry (« = 0.5). The reaction rate is plotted at a
specified value of %, or radius, as a function of y, the coordinate normal to the flame
front, for eight times in each case. Note that the reaction is skewed toward the fuel side
for a = 0.5 compared to the.symmetric case of a = 1.0.

Finally, in Fig. 6 is shown the result of plotting Y1/Y19 = Y;/Yy, and Y3/Y2 =
Y,/ Yoo versus Z at many spatial points for three different times. At relatively early time,
the concentration ratios for each species vary smoothly from zero to one with mostly
fuel on the fuel side and mostly oxidizer on the other, but some of each on both sides
of the reaction zone. At later times, however, the region of overlap where both fuel
and oxidizer are nonzero decreases. Finally, at the last time, a state relation develops in
which the relative concentrations depend only upon Z and not on time, and fuel is only
found to the left of the flame while only oxygen is found to the right. Also, the flame
structure has collapsed to a flame sheet.



158 R. G. REHM, H. R. BAUM, M. C. 1ANG, ANL D, C. LOZIEK

(W4 2Z)(aW +1 - 2)t a=1.0

B B B o o L T e o ot 21 U
2.2 4
2.8 ~
1.8 + 4
1.6 | -
L 4
1.4 .
=
1.2 1+ .
1.0 - -
ol /\ ‘
TN .- 8.50
-6 T2y - 1.00 ]
I Ti 3) = 1.85 4
L Ti 4} = 2.73 |
- TS = 7.46
3 TC 61 = 20.39 4
2k TC 71 = 152.20 ]
) T( 8) = 1135 %6
z - - = ry
-3.8 -2.5 -2.8 1.5 -1.28 -5 @ S 1.8 1S 2@ 2.5 38

FIGURE 5 (a) Plots of the rate of reaction rate as a function of g, the coordinate normal to the flame
front, for a fixed value of 5, the radius. at eight times for Re = 100, Sc =10 and a = 1.

6 CONCLUSIONS

The analytical and computational results presented in this paper demonstrate several
important features of a non-premixed flame, vortex interaction. First, we have introduced
the pseudo-mixture-fraction variable together with a decomposition of the velocity field
into a solenoidal component, determined by the imposed vortex, and an irrotational
component, determined by the combustion heat release. The pseudo-mixture-fraction
variable arises naturally as we transform the equations in the flame-sheet limit to account
for variable transport properties and thermal expansion due to heat release. These
transformations then reduce the governing equation to that of the constant-properties

"equation, allowing the solution to the latter problem to be interpreted in terms of the

solution to the former problem. In particular, these transformations confirm in a detailed
way the expected effect that thermal expansion has of pushing the flame-sheet away from
the origin where the vortex resides. From the velocity-field decomposition, we also find
an expression for the velocity potential generated by heat release and variable transport
properties, see Eq. (8).

The model selected for the finite-rate process is one in which the gas phase reaction
is for an isothermal, single-step, bimolecular reaction. As noted above, this model has
been selected because unwanted fires are the primary area of interest of the authors,
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FIGURE 5 (b) Plots of the rate of reaction rate as a function of u, the coordinate normal to the flame
front, for a fixed value of 5. the radius, at eight times for Re = 100, Sc =10 and a = 0.5.

and in this context, it is expected that fuel has entered the gaseous state from a solid
or liquid phase after pyrolyzation or evaporation by heat transfer from existing flames.
The ignition of the fire is assumed in the unwanted fire and is not an issue. Only the
ongoing combustion rate and its enhancement by mixing are of concern.

With a finite rate of reaction, a chemical kinetics time scale and a length scale derived
from this time scale and the species diffusion coefficient are the appropriate scales with
which to make the equations dimensionless. The dimensionless time then becomes a
Damkdhler number, as noted in Section 4. In unwanted fires, the long dimensionless
time or large Damkohler number is the case of most practical importance. In this limit,
the kinetics time scale becomes irrelevant and the analytical result of most interest is
the similarity solution, or flame-sheet limit originally presented in Rehm et al. (1989)
and revisited in Section 3 of the present paper. As observed in Rehm et al. (1989) and
emphasized again here, that solution has no characteristic length nor time scale. We note
here that similarity solutions are often of this nature, being solutions to which general,
initial-value problems evolve as an intermediate asymptotic Barenblatt (1979).

A new and considerably simpler approximate asymptotic expression to this flame-sheet
problem is also given in Section 3. The expression involves, of course, the error function
in a coordinate normal to the flame sheet. This solution is of interest because it provides
the correct normal coordinate in the large Schmidt number limit. Comparisons between
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FIGURE 6 Plots of the variable Y; /Y,y and Y,/Y>, versus the mixture-fraction variable Z at three different
times. 1 = 7.5, 20.4 and 1136. The parameters tor the plots are Re = 100, Sc = 10 and a = 0.5.

this expression and the results obtained in Rehm et al. (1989) have been carried out. This
solution, in conjunction with the analysis presented here and in Baum et al. (1991), is
used to determine the first-order effects of thermal expansion and temperature-dependent
transport properties. However, this solution also allows one to examine the structure of
the reaction region when the Damkohler number is not large so that rate processes are
important and to determine how the transition of the solution to the flame-sheet limit
occurs. Results of calculations demonstrating the evolution of the reaction region are
shown. Also, the evolution of the reaction to a state relation, dependent only upon the
mixture-fraction variable, is demonstrated as the Damkohler number becomes large.
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